Titrasi kompleksometri yaitu titrasi berdasarkan pembentukan persenyawaan kompleks (ion kompleks atau garam yang sukar mengion), Kompleksometri merupakan jenis titrasi dimana titran dan titrat saling mengkompleks, membentuk hasil berupa kompleks. Reaksi–reaksi pembentukan kompleks atau yang menyangkut kompleks banyak sekali dan penerapannya juga banyak, tidak hanya dalam titrasi. Karena itu perlu pengertian yang cukup luas tentang kompleks, sekalipun disini pertama-tama akan diterapkan pada titrasi. Contoh reaksi titrasi kompleksometri :
Ag+ + 2 CN- Ag(CN)2
Hg2+ + 2Cl- HgCl2
(Khopkar, 2002).
Salah satu tipe reaksi kimia yang berlaku sebagai dasar penentuan titrimetrik melibatkan pembentukan (formasi) kompleks atau ion kompleks yang larut namun sedikit terdisosiasi. Kompleks yang dimaksud di sini adalah kompleks yang dibentuk melalui reaksi ion logam, sebuah kation, dengan sebuah anion atau molekul netral (Basset, 1994).
Titrasi kompleksometri juga dikenal sebagai reaksi yang meliputi reaksi pembentukan ion-ion kompleks ataupun pembentukan molekul netral yang terdisosiasi dalam larutan. Persyaratan mendasar terbentuknya kompleks demikian adalah tingkat kelarutan tinggi. Selain titrasi komplek biasa seperti di atas, dikenal pula kompleksometri yang dikenal sebagai titrasi kelatometri, seperti yang menyangkut penggunaan EDTA. Gugus-yang terikat pada ion pusat, disebut ligan, dan dalam larutan air, reaksi dapat dinyatakan oleh persamaan :
M(H2O)n + L = M(H2O)(n-1) L + H2O
(Khopkar, 2002).
Asam etilen diamin tetra asetat atau yang lebih dikenal dengan EDTA, merupakan salah satu jenis asam amina polikarboksilat. EDTA sebenarnya adalah ligan seksidentat yang dapat berkoordinasi dengan suatu ion logam lewat kedua nitrogen dan keempat gugus karboksil-nya atau disebut ligan multidentat yang mengandung lebih dari dua atom koordinasi per molekul, misalnya asam 1,2-diaminoetanatetraasetat (asametilenadiamina tetraasetat, EDTA) yang mempunyai dua atom nitrogen – penyumbang dan empat atom oksigen penyumbang dalam molekul (Rival, 1995).
Suatu EDTA dapat membentuk senyawa kompleks yang mantap dengan sejumlah besar ion logam sehingga EDTA merupakan ligan yang tidak selektif. Dalam larutan yang agak asam, dapat terjadi protonasi parsial EDTA tanpa pematahan sempurna kompleks logam, yang menghasilkan spesies seperti CuHY-. Ternyata bila beberapa ion logam yang ada dalam larutan tersebut maka titrasi dengan EDTA akan menunjukkan jumlah semua ion logam yang ada dalam larutan tersebut (Harjadi, 1993).
Selektivitas kompleks dapat diatur dengan pengendalian pH, misal Mg, Ca, Cr, dan Ba dapat dititrasi pada pH = 11 EDTA. Sebagian besar titrasi kompleksometri mempergunakan indikator yang juga bertindak sebagai pengompleks dan tentu saja kompleks logamnya mempunyai warna yang berbeda dengan pengompleksnya sendiri. Indikator demikian disebut indikator metalokromat. Indikator jenis ini contohnya adalah Eriochrome black T; pyrocatechol violet; xylenol orange; calmagit; 1-(2-piridil-azonaftol), PAN, zincon, asam salisilat, metafalein dan calcein blue (Khopkar, 2002).
Satu-satunya ligan yang lazim dipakai pada masa lalu dalam pemeriksaan kimia adala ion sianida, CN-, karena sifatnya yang dapat membentuk kompleks yang mantap dengan ion perak dan ion nikel. Dengan ion perak, ion sianida membentuk senyawa kompleks perak-sianida, sedagkan dengan ion nilkel membentuk nikel-sianida. Kendala yang membatasi pemakaian-pemakaian ion sianoida dalam titrimetri adalah bahwa ion ini membentuk kompleks secara bertahap dengan ion logam lantaran ion ini merupakan ligan bergigi satu (Rival, 1995).
Titrasi dapat ditentukan dengan adanya penambahan indikator yang berguna sebagai tanda tercapai titik akhir titrasi. Ada lima syarat suatu indikator ion logam dapat digunakan pada pendeteksian visual dari titik-titik akhir yaitu reaksi warna harus sedemikian sehingga sebelum titik akhir, bila hampir semua ion logam telah berkompleks dengan EDTA, larutan akan berwarna kuat. Kedua, reaksi warna itu haruslah spesifik (khusus), atau sedikitnya selektif. Ketiga, kompleks-indikator logam itu harus memiliki kestabilan yang cukup, kalau tidak, karena disosiasi, tak akan diperoleh perubahan warna yang tajam. Namun, kompleks-indikator logam itu harus kurang stabil dibanding kompleks logam-EDTA untuk menjamin agar pada titik akhir, EDTA memindahkan ion-ion logam dari kompleks-indikator logam ke kompleks logam-EDTA harus tajam dan cepat. Kelima, kontras warna antara indikator bebas dan kompleks-indikator logam harus sedemikian sehingga mudah diamati. Indikator harus sangat peka terhadap ion logam (yaitu, terhadap pM) sehingga perubahan warna terjadi sedikit mungkin dengan titik ekuivalen. Terakhir, penentuan Ca dan Mg dapat dilakukan dengan titrasi EDTA, pH untuk titrasi adalah 10 dengan indikator eriochrome black T. Pada pH tinggi, 12, Mg(OH)2 akan mengendap, sehingga EDTA dapat dikonsumsi hanya oleh Ca2+ dengan indikator murexide (Basset, 1994).
Kesulitan yang timbul dari kompleks yang lebih rendah dapat dihindari dengan penggunaan bahan pengkelat sebagai titran. Bahan pengkelat yang mengandung baik oksigen maupun nitrogen secara umum efektif dalam membentuk kompleks-kompleks yang stabil dengan berbagai macam logam. Keunggulan EDTA adalah mudah larut dalam air, dapat diperoleh dalam keadaan murni, sehingga EDTA banyak dipakai dalam melakukan percobaan kompleksometri. Namun, karena adanya sejumlah tidak tertentu air, sebaiknya EDTA distandarisasikan dahulu misalnya dengan menggunakan larutan kadmium (Harjadi, 1993).

06.08

Iodimetri merupakan titrasi redoks yang melibatkan titrasi langsung I2 dengan suatu agen pereduksi. I2 merupakan oksidator yang bersifat moderat, maka jumlah zat yang dapat ditentukan secara iodimetri sangat terbatas, beberapa contoh zat yang sering ditentukan secara iodimetri adalah H2S, ion sulfite, Sn2+, As3+ atau N2H4. Akan tetapi karena sifatnya yang moderat ini maka titrasi dengan I2 bersifat lebih selektif dibandingkan dengan titrasi yang menggunakan titrant oksidator kuat.
Pada umumnya larutan I2 distandarisasi dengan menggunakan standar primer As2O3, As2O3 dilarutkan dalam natrium hidroksida dan kemudian dinetralkan dengan penambahan asam. Disebabkan kelarutan iodine dalam air nilainya kecil maka larutan I2 dibuat dengan melarutkan I2 dalam larutan KI, dengan demikian dalam keadaan sebenarnya yang dipakai untuk titrasi adalah larutan I3-.
I2 + I-  -> I3-
Titrasi iodimetri dilakukan dalam keadaan netral atau dalam kisaran asam lemah sampai basa lemah. Pada pH tinggi (basa kuat) maka iodine dapat mengalami reaksi disproporsionasi menjadi hipoiodat.
I2 + 2OH-  <-> IO3-  +  I-  + H2O
Sedangkan pada keadaan asam kuat maka amilum yang dipakai sebagai indicator akan terhidrolisis, selain itu pada keadaan ini iodide (I-) yang dihasilkan dapat diubah menjadi I2 dengan adanya O2 dari udara bebas, reaksi ini melibatkan H+ dari asam.
4I- + O2 + 4H+  -> 2I2 + 2H2O
Titrasi dilakukan dengan menggunakan amilum sebagai indicator dimana titik akhir titrasi diketahui dengan terjadinya kompleks amilum-I2 yang berwarna biru tua. Beberapa reaksi penentuan denga iodimetri ditulis dalam reaksi berikut:
H2S + I2 -> S + 2I- + 2H+
SO32- + I2 + H2O -> SO42- + 2I- + 2H+
Sn2+  + I2  -> Sn4+ + 2I-
H2AsO3 + I2 + H2O -> HAsO42- + 2I- + 3H+

06.08

Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodide) untuk menghasilkan I2, I2 yang terbentuk secara kuantitatif dapat dititrasi dengan larutan tiosulfat. Dari pengertian diatas maka titrasi iodometri adalah dapat dikategorikan sebagai titrasi kembali.
Iodida adalah reduktor lemah dan dengan mudah akan teroksidasi jika direaksikan dengan oksidator kuat. Iodida tidak dipakai sebagai titrant hal ini disebabkan karena factor kecepatan reaksi dan kurangnya jenis indicator yang dapat dipakai untuk iodide. Oleh sebab itu titrasi kembali merubakan proses titrasi yang sangat baik untuk titrasi yang melibatkan iodide. Senyawaan iodide umumnya KI ditambahkan secara berlebih pada larutan oksidator sehingga terbentuk I2. I2 yang terbentuk adalah equivalent dengan jumlah oksidator yang akan ditentukan. Jumlah I2 ditentukan dengan menitrasi I2 dengan larutan standar tiosulfat (umumnya yang dipakai adalah Na2S2O3) dengan indicator amilum jadi perubahan warnanya dari biru tua kompleks amilum-I2 sampai warna ini tepat hilang.
Reaksi yang terjadi pada titrasi iodometri untuk penentuan iodat adalah sebagai berikut:
IO3-  + 5 I-  + 6H+  -> 3I2  + H2O
I2 + 2 S2O32-  -> 2I- + S4O62-
Setiap mmol IO3- akan menghasilkan 3 mmol I2 dan 3 mmol I2 ini akan tepat bereaksi dengan 6 mmol S2O32- (ingat 1 mmol I2 tepat bereaksi dengan 2 mmol S2O32-) sehingga mmol IO3- ditentukan atau setara dngan 1/6 mmol S2O32-.
Mengapa kita menitrasi langsung antara tiosulfat dengan analit? Beberapa alasan yang dapat dijabarkan adalah karena analit yang bersifat sebagai oksidator dapat mengoksidasi tiosulfat menjadi senyawaan yang bilangan oksidasinya lebih tinggi dari tetrationat dan umumnya reaksi ini tidak stoikiometri. Alasa kedua adalah tiosulfat dapat membentuk ion kompleks dengan beberapa ion logam seperti Besi(II).
Beberapa hal yang perlu diperhatikan dalam melakukan titrasi Iodometri adalah sebagai berikut:
Penambahan amilum sebaiknya dilakukan saat menjelang akhir titrasi, dimana hal ini ditandai dengan warna larutan menjadi kuning muda (dari oranye sampai coklat  akibat terdapatnya I2 dalam jumlah banyak), alasannya kompleks amilum-I2 terdisosiasi sangat lambat akibatnya maka banyak I2 yang akan terabsorbsi oleh amilum jika amilum ditambahkan pada awal titrasi, alasan kedua adalah biasanya iodometri dilakukan pada media asam kuat sehingga akan menghindari terjadinya hidrolisis amilum
Titrasi harus dilakukan dengan cepat untuk meminimalisasi terjadinya oksidasi iodide oleh udara bebas. Pengocokan pada saat melakukan titrasi iodometri sangat diwajibkan untuk menghindari penumpukan tiosulfat pada area tertentu, penumpukkan konsentrasi tiosulfat dapat menyebabkan terjadinya dekomposisi tiosulfat untuk menghasilkan belerang. Terbentuknya reaksi ini dapat diamati dengan adanya belerang dan larutan menjadi bersifat koloid (tampak keruh oleh kehadiran S).
S2O32-  +  2H+  -> H2SO3 + S
Pastikan jumlah iodide yang ditambahkan adalah berlebih sehingga semua analit tereduksi dengan demikian titrasi akan menjadi akurat. Kelebihan iodide tidak akan mengganggu jalannya titrasi redoks akan tetapi jika titrasi tidak dilakukan dengan segera maka I- dapat teroksidasi oleh udara menjadi I2.
Bagaimana menstandarisasi larutan tiosulfat?
Tiosulfat yang dipakai dalam titrasi iodometri dapat distandarisasi dengan menggunakan senyawa oksidator  yang memiliki kemurnian tinggi (analytical grade) seperti K2Cr2O7, KIO3, KBrO3, atau senyawaan tembaga(II).
Bila digunakan Cu(II) maka pH harus dibuffer pada pH 3 dan dipakai tiosianat untuk masking agent, KSCN ditambahkan pada waktu mendektitik akhir titrasi dengan tujuan untuk menggantikan I2 yang teradsorbsi oleh CuI. Bila pH yang digunakan tinggi maka tembaga(II) akan terhidrolisis dan akan terbentuk hidroksidanya. Jika keasaman larutan sangat tinggi maka cenderung terjadi reaksi I- sebagai akibat adanya Cu(II) dalam larutan yang megkatalis reaksi tersebut.
Beberapa contoh reaksi iodometri adalah sebagai berikut
2MnO4-  + 10 I- + 16 H+  <-> 2Mn2+  + 5 I2 + 8H2O
Cr2O72- + 6I- <-> 14 H+  <-> 2Cr3+  + 3 I2 + 7H2O
2Fe3+  +  2I-  <-> 2Fe2+  + I2
2 Ce4+  + 2I-  <-> 2Ce3+ + I2
Br2  + 2I-  <-> 2Br-  + I2

21.41

Gugus fungsi adalah bagian yang reaktif dari suatu senyawa dan menentukan sifat senyawa. Senyawa karbon dapat di kelompokkan sesuai sifat khas yang dimiliki.
Contoh : CH4 : metana, CH4OH : metanol
KEGUNAAN SENYAWA KARBON
ALKOHOL
ETER
ALDEHID
KETON
ASAM KARBOKSILAT
ESTER 
ALKOHOL
a.Metanol
Metanol merupakan zat cair bening yang tidak berwarna, dapat bercampur dengan air, mudah terbakar dengan nyala biru dan baunya sama degan etanol. Di indutri, metanol digunakan sebagai pembuatan formalin.metanol sangat beracun dan tidak dapat di minum.
b. Etanol
Jika sedikit etanol diminum akan menimbulkan kesegaran, tetapi berakibat timbulnya pengaruh yang membiuskan dan melemahkan. Alkohol banyak digunakan sebagai pelarut dan bahan bakar (spritus)
c. Polihidroksi alkohol
Digunakan dalam obat-obatan, kosmetik, pembuatan tinta dan untuk membuat nitrogliselin..
REAKSI PADA ALKOHOL
R – CH2OH         R – C
Alkohol primer dapat di oksidasi menjadiAldehid dan asam karboksilat
R – CH – R         R – C – R 
Alkohol skunder dapat dioksidasi menghasilkan keton

ETER
Banyak digunakan untuk pelarut, pengekstraksi, dan pembiusan.
Banyak digunakan untuk pelarut, pengekstraksi, dan pembiusan.
REAKSI PADA ETER
Eter tidak dapat bereaksi dengan natrium. Oleh karenanya, melalui reaksi ini, senyawa eter dapat di bedakan dengan alkohol. Eter dapat bereaksi dengan asam halida.
CH3 – O – C2H5 + HI           CH3 – OH + C2H5I

ALDEHID
Matenal atau formaldehid merupakan aldehid yang banyak di produksi. Contoh : untuk membuat formalin (larutan lebih kurang 40% formaldehid dalam air) yang banyak digunakan sebai pengawet.
 REAKSI PADA ALDEHID
Reaksi adisi aldehid dengan air membentuk alkanadiol
H – C = O + H – OH          H – C – OH
Formaldehid  metanadiol (formaldehid hidrat)

KETON
Keton banyak digunakan dalam kehidupan sehari-hari sebagai pelarut organik (misalnya sebagai pembersih cat kuku). Keton juga dapat di manfaat sebagai pembuat kloroform yang digunaan sebagai obat bius.
ASAM KARBOKSILAT
A.ASAM FORMIAT
Dalam jumlah sedikit terdapat dalam keringat. Banyak digunakan dalam industri tekstil, lateks, penyamakan kulit.
B.ASAM ASETAT
Merupakan zat cair berbau tajam dan mudah larut dalam air. Banyak digunakan dalm makanan maupun dalam membuat selulosa asetat pada pembuatan crayon.

ESTER
Senyawa ester dapat di kelompokkan menjadi ester buah-buahan, lilin, lemak. Ester buah-buahan merupakan ester rantai pendek yang berasal dari asam karboksilat dan alkohol suku rendah. Biasanya digunakan sebagai penyedap, pelarut dalm pembuatan cat, perekat.

Berdasarkanperbedaan letak terikatnya gugus –OH pada atom C. Alkohol dibedakan menjadi tiga yaitu :
1) Alkohol primer yaitu jika gugus –OH terikat pada atom C primer (atom C yang mengikat 1 atom C yang lain secara langsung )
Contoh :
CH3 CH2 – CH2 – CH2 – OH n. Butanol
2) Alkohol sekunder yaitu jika gugus –OH terikat pada atom C sekunder (atom C yang mengikat secara langsung
dua atom C yang lain).
2-butanol
3) Alkoho l tersier
yaitu jika gugus –OH terikat pada atom C tersier (atom C yang mengikat secara langsung tiga buah atom C yang langsung)
Contoh :
2 Metil 2 Propanol
Secara fisik akan sulit membedakan antara alkohol primer, sekunder dan tersier. Karena bau dan warna ketiganya dapat dikatakan sama. Cara yang bisa digunakan
untuk membedakan adalah mengoksidasi menggunakan KMnO4 , K2Cr2O7 , H2CrO4 atau O2 dengan perbedaan sebagai berikut :
a) Alkohol primer jika dioksidasi akan dihasilkan senyawa aldehidenya dan jika dioksidasi lebih lanjut dihasilkan senyawa asam karboksilatnya.
Contoh:
c) Alkohol tersier tidak dapat dioksidasi


Berdasarkan jumlah gugus fungsinya alkohol dibedakan menjadi alkohol monovalen dan alkohol polivalen.
a) Alkohol monovalen adalah alkohol yang hanya mempunyai satu gugus fungsional – OH.
Contoh : CH3 – CH2 OH Etanol
CH3 – CH2 – CH2 – OH Propanol
b) Alkohol polivalen adalah jenis senawa alkohol yang mempunyai gugus fungsional lebih dari satu.

1. Rumus Umum
Senyawa alkohol atau alkanol dapat dikatakan senyawa alkana yang satu atom H–nya diganti dengan gugus –OH (hidroksil). Sehingga seperti terlihat pada tabel 4.1 rumus umum senyawa alkohol adalah R–OH dimana R adalah gugus alkil. Untuk itu rumus umum golongan senyawa alkohol juga dapat ditulis CnH2n+1 – OH
Contoh :
GUGUS ALKIL DAN RUMUS MOLEKUL ALKOHOLNYA
Untuk Nilai “ n “
R
Rumus Molekul Alkohol
1.
2.
3.
CH3
C2H5
C3H7
CH3 – OH
C2H5 – OH
C3H7 – OH
Penamaan senyawa alkohol prinsipnya ada dua cara yaitu :
1) Dengan aturan IUPAC yaitu menggunakan nama senyawa alkananya dengan mengganti
akiran “ ana “ dalam alkana menjadi “ anol “ dalam alkoholnya.
2) Dengan sistem Trivial yaitu dengan menyebutkan nama gugus alkilnya diikuti kata alkohol.
Contoh :
CONTOH PENAMAAN ALKOHOL
Alkana
Nama
Rumus molekul
Nama IUPAC
Nama Trivial
CH4
C2H6
C3H8
C4H10
Metana
Etana
Propana
Butana
CH3 – OH
C2H5 – OH
C3H7 – OH
C4H9OH
Metanol
Etanol
Propanol
Butanol
Metil alkohol
Etil alkohol
Propil alkohol
Butil alkohol
Untuk senyawa–senyawa alkohol dengan rumus struktur bercabang aturan penamaannya adalah sebagai berikut :
a. Tetapkan rantai utama dengan cara memilih deretan C paling panjang yang mengikat gugus fungsi –OH , kemudian beri nama sesuai nama alkoholnya.
b. Pemberian nomor pada rantai utama dimulai dari ujung yang memberikan nomor terkecil bagi atom C yang mengikat gugus –OH. Langkah selanjutnya sama dengan penamaan senyawa – senyawa hidrokarbon (terdahulu)
Contoh :

3 – Propil – 2 – Heksanol
(rantai utama dipilih yang 6C bukan 7C karena jika dipilih 7C gugus –OH nya tidak ikut).
b)

3 metil 2 butanol bukan
2 metil 3 butanol (ingat aturan 2)

Teknik Pewarnaan Bakteri
1. Mengamati Morfologi Bakteri
Sel bakteri dapat teramati dengan jelas jika digunakan mikroskop dengan perbesaran 100x10 yang ditambah minyak imersi. Jika dibuat preparat ulas tanpa pewarnaan, sel bakteri sulit terlihat. Pewarnaan bertujuan untuk memperjelas sel bakteri dengan menempelkan zat warna ke permukaan sel bakteri. Zat warna dapat mengabsorbsi dan membiaskan cahaya, sehingga kontras sel bakteri dengan sekelilingnya ditingkatkan.
Zat warna yang digunakan bersifat asam atau basa. Pada zat warna basa, bagian yang berperan dalam memberikan warna disebut kromofor dan mempunyai muatan positif. Sebaliknya pada zat warna asam bagian yang berperan memberikan zat warna memiliki muatan negatif. Zat warna basa lebih banyak digunakan karena muatan negatif banyak banyak ditemukan pada permukaan sel. Contoh zat warna asam antara lain Crystal Violet, Methylene Blue, Safranin, Base Fuchsin, Malachite Green dll. Sedangkan zat warna basa antara lain Eosin, Congo Red dll.

2. Jenis Pewarnaan
Pewarnaan pada bakteri di bagi menjadi tiga, yaitu :
2.1 Pewarnaan sederhana
Pewarnaan sederhana merupakan teknik pewarnaan yang paling banyak digunakan. Disebut sederhana karena hanya menggunakan satu jenis zat warna untuk mewarnai organisme tersebut. Kebanyakan bakteri mudah bereaksi dengan pewarnaan-pewarnaan sederhana karena sitoplasamanya bersifat basofilik (suka dan basa). Zat-zat warna yang digunakan untuk pewarnaan sederhana umumnya bersifat alkolin. Dengan pewarnaan sederhana dapat mengetahui bentuk dan rangkaian sel-sel bakteri. Pewarna basa yang biasa digunakan untuk pewarnaan sederhana ialah memilen biru, krisdal violet dan karbol fuehsin. yang man pewarnaan sederhan ini di bagi lagi menjadi dua jenis pewarnaan
a. Pewarnaan Asam
Mewrupakan pewarnaan yang menggunakan satu macam zat warna dengan tujuan untuk hanya untuk melihat bentuk sel. adapun zat warna yang di pakai dalam pewarnaan positif adalah biru metilen, dan air furksin.
Cara kerja untuk melakukan pewarnaan bakteri yaitu sebelum dilakukan pewarnaan dibuat ulasan bakteri di atas object glass yang kemudian difiksasi. Jangan menggunakan suspensi bakteri yang terlalu padat, tapi jika suspensi bakteri terlalu encer, maka akan diperoleh kesulitan saat mencari bakteri dengan mikroskop. Fiksasi bertujuan untuk mematikan bakteri dan melekatkan sel bakteri pada object glass tanpa merusak struktur selnya.

b. Pewarnaan Basa
Pewarnaan basa atau negatif merupakan metode pewarnaan untuk mewarnai bakteri tetapi mewarnai latar belakangnya menjadi hitam gelap. Pada pewarnaan ini mikroorganisme kelihatan transparan (tembus pandang). Teknik ini berguna untuk menentukan morfologi dan ukuran sel. Pada pewarnaan ini olesan tidak mengalami pemanasan atau perlakuan yang keras dengan bahan-bahan kimia, maka terjadinya penyusutan dan salah satu bentuk agar kurang sehingga penentuan sel dapat diperoleh dengan lebih tepat. Metode ini menggunakan cat nigrosin atau tinta cina.
Cara kerja pewarnaan negatif, yaitu ambil dua object glass, teteskan nigrosin atau tinta cina di ujung kanan salah satu object glass. biakan diambil lalu diulaskan atau diteteskan dalam tetesan nigrosin tadi, lalu dicampurkan Tempelkan sisi object glass yang lain kemudian gesekkan ke samping kiri Biarkan preparat mengering di udara, jangan difiksasi atau dipanaskan di atas api.

2.2 Pewarnaan Diferensial (Gram)
Pewarnaan Gram atau metode Gram adalah suatu metode empiris untuk membedakan spesies bakteri menjadi dua kelompok besar, yakni gram-positif dan gram-negatif, berdasarkan sifat kimia dan fisik dinding sel mereka. Metode ini diberi nama berdasarkan penemunya, ilmuwan Denmark Hans Christian Gram (1853–1938) yang mengembangkan teknik ini pada tahun 1884 untuk membedakan antara pneumokokus dan bakteri Klebsiella pneumoniae. Bakteri Gram-negatif adalah bakteri yang tidak mempertahankan zat warna metil ungu pada metode pewarnaan Gram. Bakteri gram-positif akan mempertahankan zat warna metil ungu gelap setelah dicuci dengan alkohol, sementara bakteri gram-negatif tidak. Pada uji pewarnaan Gram, suatu pewarna penimbal (counterstain) ditambahkan setelah metil ungu, yang membuat semua bakteri gram-negatif menjadi berwarna merah atau merah muda. Pengujian ini berguna untuk mengklasifikasikan kedua tipe bakteri ini berdasarkan perbedaan struktur dinding sel mereka.
Proses pewarnaan diferensial ini memerlukan 4 jenis reagen. Bakteri terbagi atas dua kelompok berdasarkan pewarnaan ini, yaitu bakteri gram positif dan bakteri gram negatif. Perbedaan ini berdasarkan warna yang dapat dipertahankan bakteri. Reagen pertama disebut warna dasar, berupa pewarna basa, jadi pewarna ini akan mewarnai dengan jelas. Reagen kedua disebut bahan pencuci warna (decolorizing agent). Tercuci tidaknya warna dasar tergantung pada komposisi dinding sel, bilakomponen dinding sel kuat mengikat warna, maka warna tidak akan tercuci sedangkan bila komponen dinding sel tidak kuat menelan warna dasar, maka warna akan tercuci. Reagen terakhir adalah warna pembanding, bila warna tidak tercuci maka warna pembanding akan terlihat, yang terlihat pada hasil akhir tetap warna dasar. Jadi bahan zat warna yang di pakai dalam pewarnaan gram, yaitu kristal violet, larutan iodin, alkohol 90 %, dan larutan safranin. Sifat bakteri terhadap pewarnaan Gram merupakan sifat penting untuk membantu determinasi suatu bakteri. Beberapa perbedaan sifat yang dapat dijumpai antara bakteri Gram positif dan bakteri Gram negatif.
Pengecatan gram dilakukan dalam 4 tahap yaitu :
1. Pemberian cat warna utama (cairan kristal violet) berwarna ungu.
2. Pengintesifan cat utama dengan penambahan larutan mordan JKJ.
3. Pencucian (dekolarisasi) dengan larutan alkohol asam.
4. Pemberian cat lawan yaitu cat warna safranin
a. Bakteri Gram negatif
Bakteri gram-negatif adalah bakteri yang tidak mempertahankan zat warna metil ungu pada metode pewarnaan Gram. Bakteri gram-positif akan mempertahankan warna ungu gelap setelah dicuci dengan alkohol, sementara bakteri gram-negatif tidak. Pada uji pewarnaan Gram, suatu pewarna penimbal (counterstain) ditambahkan setelah metil ungu, yang membuat semua bakteri gram-negatif menjadi berwarna merah atau merah muda. Pengujian ini berguna untuk mengklasifikasikan kedua tipe bakteri ini berdasarkan perbedaan struktur dinding sel mereka.
Banyak spesies bakteri gram-negatif yang bersifat patogen, yang berarti mereka berbahaya bagi organisme inang. Sifat patogen ini umumnya berkaitan dengan komponen tertentu pada dinding sel gram-negatif, terutama lapisan lipopolisakarida (dikenal juga dengan LPS atau endotoksin).

b.Bakteri Gram Positif
Bakteri gram-positif adalah bakteri yang mempertahankan zat warna metil ungu sewaktu proses pewarnaan Gram. Bakteri jenis ini akan berwarna biru atau ungu di bawah mikroskop, sedangkan bakteri gram-negatif akan berwarna merah atau merah muda. Perbedaan klasifikasi antara kedua jenis bakteri ini terutama didasarkan pada perbedaan struktur dinding sel bakteri.Ciri-ciri bakteri gram positif yaitu Struktur dinding selnya tebal, sekitar 15-80 nm, berlapis tunggal atau monolayer. Dinding selnya mengandung lipid yang lebih normal (1-4%), peptidoglikan ada yang sebagai lapisan tunggal. Komponen utama merupakan lebih dari 50% berat ringan.
Cara kerja pewarnaan diferensial, yaitu Sediakan kaca benda yang bersih, lalu lewatkan diatas nyala api bunsen teteskan setetes aquades steril diatas kaca benda tersebut secara aseptik ambilah inokulum bakteri yang akan diperksa, lalu letakkan diatas tetesan aquades itu, kemudian ratakan perlahan-lahan ambil kaca benda yang tegak sehingga apusan menjadi tipis dan merata. Biarkan sampai kering fiksasi dengan cara melewatkan apusan tersebut diatas nyala api dengan cepat letakkan apusan diatas kawat penyangga yang berada diatas mangkuk pewarna. Lalu teteskan larutan kristal violet pada apusan dan biarkan selama 30-60 detik cuci warna dasar dengan air mengalir, keringkan teteskan larutan iodin pada apusan, biarkan selama 30-60 detik cuci larutan iodin dengan air mengalir, keringkan rendam atau basuh dengan alkohol ... % selama ... detik teteskan larutan safranin, biarkan selama 30-60 detik cuci dengan air mengalir, lalu keringkan amati dengan mikroskop gambar bentuk morfologi

2.3 Pewarnaan Khusus
Pewarnaan khusus merupakan metode pewarnaan untuk mewarnai struktur khusus atau tertentu dari bakteri seperti bagian spora, kapsul, flagel dsb.
Contoh, Pewarnaan khusus :
a. Pewarnaan Endospora
Anggota dari genus Clostridium, Desulfomaculatum dan Bacillus adalah bakteri yang memproduksi endospora dalam siklus hidupnya. Endospora merupakan bentuk dorman dari sel vegetatif, sehingga metabolismenya bersifat inaktif dan mampu bertahan dalam tekanan fisik dan kimia seperti panas, kering, dingin, radiasi dan bahan kimia. Tujuan dilakukannya pewarnaan endospora adalah membedakan endospora dengan sel vegetatif, sehingga pembedaannya tampak jelas. Endospora tetap dapat dilihat di bawah mikroskop meskipun tanpa pewarnaan dan tampak sebagai bulatan transparan dan sangat refraktil. Namun jika dengan pewarnaan sederhana, endospora sulit dibedakan dengan badan inklusi (kedua-duanya transparan, sel vegetatif berwarna), sehingga diperlukan teknik pewarnaan endospora. Berikut merupakan prosedur pewarnaan endospora dengan metode Schaeffer-Fulton.